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Background: _

e Capital Bikeshare is a DC based company that provides rentable Ebikes
e Their Ebike usage data is public
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Research Question:

Can we predict the number of riders per hour given the time and
weather conditions?

e \With a better understanding of bike usage times and locations, the
bike network can be optimized to increase user activity and user
satisfaction.

e \With this information new bike storage locations and inventory
quantities can be adjusted to help optimize the network.



Project Takeaways:

e \We were able to build a model that explains 88% of the variance in E-Bike usage, a
promising result (Random Forest Regressor).

e Temperature, humidity, and if it was rush hour were the three most important variables in
predicting E-Bike usage.

e Given these results, some potential changes to improve business:

©)

©)
©)
©)

Increase E-Bike redistribution before rush hour to capitalize on commuter usage.
Add E-Bike charging stations near dense employment locations.

Offer discounts or incentives during no-optimal weather conditions.

If E-Bike rollbacks or updates need to be done, perform them during non-peak
months.



Variable to Predict: Ebike Rides per Hour

Explanatory Variables:

Numerical Variables:

e temperature
e humidity
e wind speed

Categorical Variables:

e weather score
e weekend or not
e season of year
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More Riders in Warmer Temperature:

e Temperature normalized
by max (105°F)

e Decent positive
correlation (R? = 0.16)
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Less Riders in Higher Humidity:

humidity (normalized)

e Humidity normalized by
max

e Decent negative
correlation (R?=0.10)
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More Rides in the Warmer Months:

Total Bike Rides by Month
e May - Oct are the most
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More Rides During Rush Hour:

e 8am and 5pm are peak Ebike

usage hours, most likely for

commuters

e Usage in general tends to follow

normal daytime hours
Weekend/Holiday
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More Rides With Better Weather Conditions:

_ _ Bike Ride Counts by Weather Situation and Season
e Clear skies during the
Summer or Fall had the 250
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Data Modeling Summary:

Model RMSE (cv=6) R? (cv=6)
e Many different model , ,
Linear Regression 0.56 0.69
types were attempted
e Random Forest SGD Regression 0.57 0.68
Regressor had the best
resu.lts _ Ridge Regression 0.56 0.68
e Tuning the RF slightly
improved the models Decision Tree Regression | 0.40 0.83
performance
Bagging Regression 0.31 0.90
Random Forest 0.294 0.915
Regression
Random Forest 0.289 0.917

Regression (tuned)

Random Forest 0.333 (Test) 0.885 (Test)
Regression (tuned)



Data Modeling:

e Training R* = 0.917
e Testing R?= 0.885
e All R?2and RMSE values use 6-fold cross validation

tuned_mse_scores —cross_val_score(random_s
tuned_r2_scores = cross_val_score(random_se
print ("RandomForestRegressor (tuned with random search)")
®int("Train Xval R*2 ", np.mean(rf_tuned_r2_scores))
8 print("Train Xval RMSE ", np.sqrt(np.mean(rf_tuned_mse

v/ 17m 55.4s
RandomForestRegressor (tuned with random search)

Xval R"2 0.9170254090835693
Xval RMSE 0.28978735730887784

1g="neg_mean_squared_error")

tr2it)

5 = —cross_val_score(
cross_val_score(ran

print("RandomForestRegressor (tuned with random search)")
print("Test Xval R*2 ", np.mean(rf_tuned_r2_c
print("Test Xval RMSE ", np.sqrt(np.mean(rf_tuned_mse_scores

v/ 8m 34.9s
RandomForestRegressor (tuned with random search)

Test Xval R*2 0.8853303580216282
Test Xval RMSE 0.33349899770253133

1g="neg_mean_squared_error")
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Feature Importance:
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Conclusion:

e Given the weather conditions and time of day, using a Random Forest Regression
yielded the best results.

e We obtained an R? of 0.885 on the test set. Thus our predictor variables explain a
large portion of the variability in the number of Ebike rides per hour.

e Temperature, humidity, and if it was rush hour were the three most important
variables.



